
Getting started with DeltaCad macros

Jim Brown
jimbrown@telkomsa.net

Why am I writing this…...2
So, what’s a macro… ...2
Let’s run one…. ..3
Our first macro… ..4

Step 1- open the editor ...5
Step 2- type in the code for a Message Box and test it.............................5
Step 3- Add your macro to the macro list..7
Step 4- Run the macro from within DC: ..7

Variables and Return Values..8
Let’s use a DC macro command ..10

Using a return value on the fly ..10
Allocate the return value to a variable...11
Comments in your macro..12

Getting input from the user… the InputBox ..12
Controlling program flow ..14

More on the MsgBox...14
If….. and GoTo…..16
Other ways of controlling the flow ...17
For … Next…..17

What next? ...18

Why am I writing this….

Well when I started trying to work with DC macros, I didn’t know where to
start. I figured it out by digging through some existing macros, and looking in
the help. I thought I could save you that bother, especially if you don’t have
much experience in programming in the first place.

This guide is exactly what it says- it’s a Getting Started, it’s not a definitive
work on DC macros. I am not an expert on any of the following…
• DC
• DC macros
• Visual Basic
• Visual Basic macros
• Anything at all, really ☺

But I hope you get something out of this….

So, what’s a macro…

It’s always easy to start with a proper definition- let’s see what we can find:
• Wikipedia says that the idea [of macros] is to make available to the

programmer a sequence of computing instructions as a single program
statement, making the programming task less tedious and less error-prone

• Chambers says that a macro is a single instruction that brings a set of
instructions into operation.

In the context of DeltaCad, a macro would seem to be a short-hand way of
lumping together a whole lot of things you can already do in DC, but under the
umbrella of one single operation. If there’s something you do often in DC, but
find it’s tedious to repeat a whole series of menu selections to do it, then a
macro might be what you need.

In short, a macro is a program which implements a series of DC capabilities
every time you run the macro. It runs the same series of instructions each
time, except that you may influence the outcome if the macro was written to
allow that. For example, if there was a macro to draw a particular compound
shape by constructing a series of individual DC lines and shapes, it might ask
you where you want to place the shape and how big it should be. When it’s
finished, it might ask you if you want to do another one before it stops. (You
might draw a simple house by sticking a triangle on top of a square, for
example.)

Let’s run one….

You get to DC’s Macros by choosing the Macro tab- you should then get
this…

You run a macro by choosing the one you want from the drop down menu-
circled red above. (Ok, it’s an oval, but I’m not sure there’s such a word as
“ovalled”.) Then hit the Run Macro button- try it with the Gear Maker, and
you’ll be asked a few questions as shown below…

Then when you fill in the numbers and hit OK, you’ll get something like this…

You can imagine the effort this would have taken had you done it manually
with DC’s lines, circles and shapes. That’s exactly what macros are for…

Our first macro…

We have to start somewhere… let’s see how the Message Box works.

There are two kinds of commands in DC’s macro language. The first, which
we’ll look at now, are not DC specific. They came bundled with the macro
language engine that DC bought in from Cypress. The Message Box is one of
these. You can read all about the generic commands in DC’s Help, as Basic
Macro Language Ref, as shown below…

The DC specific commands are explained in the DeltaCad User’s Guide-
these commands all start with the letters dc, as you can see here…

We’ll look at them later.

Step 1- open the editor

This is easy, just click the E button, and the editor opens up...

(Don’t confuse this with the Edit Macro button, which opens the current macro
(the one visible in the drop down) for editing.)

Step 2- type in the code for a Message Box and test it

Have a look at the MsgBox command in the manual-

MsgBox (msg, [type] [, title])

Whatever’s in the brackets is optional, so the simplest message box is

MsgBox msg

where msg is the text of the message you want to display.

Look further down the MsgBox help, till you get to the example. Ignore most if
it… for now notice that a macro needs a beginning and an end. You’ll see
there’s a command at the top:

Sub Main

and one at the bottom

End Sub

and we need to put our MsgBox command in between them. If we want to
display the message “Hello World” in a message box, we need to type the
following code into the editor- note the quotes:

Now save your work (File | Save As), because you don’t want to lose all that
typing.

Run the macro as shown here:

You should get this on the screen:

Disappear the message by hitting OK, and you’ll go back to the editor, which
you should then close in the normal Windows fashion.

Step 3- Add your macro to the macro list

Right now, your macro is invisible to DC- you need to add it to DC’s macro list
by choosing Edit Macro List and Add as shown:

Then browse to where you saved it, and give it a name by which it will appear
in the list:

Step 4- Run the macro from within DC:

Your macro will now be in the drop down, hit Run Macro and Voila!

Variables and Return Values

If you have never used a programming language before, you may not have
encountered these terms- here’s a brief explanation.

A variable, in the world of programming, is a pigeon-hole in the computer
memory where something can be stored. As the name variable implies, the
contents of the pigeon hole can change, although the name of the pigeon hole
will remain constant. If you go to the bank and ask the teller for your balance,
they’ll ask you for your account number. In the bank’s system, there will be a
variable called AccountNumber or AcctNum or AccNo or something- while the
teller is dealing with you, the content of that pigeon hole will be your account
number, say 12345. Other variables might be CurrentBalance and CreditLimit,
which will temporarily hold your balance and limit. When the teller has finished
with you, the contents of AccNo might change to 54321 for the next client, and
the other variables will then hold that client’s balance and so on.

In most programming languages, there is a requirement or at least an ability
to allocate a pigeon hole before it gets used. If I have a need to put the value
555-9999 into a pigeon hole which I want to be known as TelNum, I could in
some languages say something like

TelNum = 555-9999

and the system would allocate a pigeon hole, call it TelNum and put 555-9999
into it all in one go. Other programming languages insist you allocate and
name the pigeon hole first, then put the value in. In the process of allocating
the pigeon hole, it is usual to tell the system what kind of thing you’re going to
put in it, eg a bunch of characters like a name or address (usually referred to
as a string), or a whole number (referred to as an integer) or some other kind
of value.

DC (as a type of Basic), uses the command Dim, and before I use the variable
TelNum, I can declare it (as they call this allocation) by saying something like:

Dim TelNum

TelNum = 555-9999

Read up on the Dim statement in the help, to see what types of variable you
can declare. The vanilla use of Dim as above, declares the variable as a
Variant, which is a sort of catch-all, but if you specifically want the variable to
be an Integer, you would say

Dim YearOfBirth as Integer.

When you fire up the macro editor and run a macro, DC isn’t fussed about
whether or not you declare your variables before you use them. Most
computer programmers say it’s good practice to declare them first- won’t go
into that now- and there is a way you can get DC to force you to. Above the
Sub Main line of your macro type the command

Option Explicit

Then DC will not allow you to use an undeclared variable. If you then try to put
a value into a variable which doesn’t exist, DC will shout at you and your
macro won’t work. It’s up to you.

Right, so what’s a return value? Some commands will do something and
then bring you an answer- that answer is the return value. It’s the value which
the command returns to you.

In the banking example, there might be a command which calculates the
balance for an account whose number we feed to the command…

Dim AccountNumber

Dim AccountBalance

AccountNumber = 12345

AccountBalance = WhatIsTheBalance (AccountNumber)

Display AccountNumber; AccountBalance

That says….

• Allocate space for two variables, AccountNumber and AccountBalance
• Give AccountNumber a value… this would normally be keyed in on the

screen, not given as a line of program like I’ve got it here
• Run the command WhatIsTheBalance, on the account whose number is

the current value of the variable called AccountNumber
• Put the answer (the return value) into the variable AccountBalance
• Show the values on the screen.

Some DC commands return values, some don’t. When they do, the help will
tell you.

Ok, let’s move on to use some of this new knowledge and write a more useful
macro….

Let’s use a DC macro command

The MsgBox was a pretty trivial example, but served to show how to create,
test and save a macro, and how to put it into DC’s list. That macro didn’t do
much though so let’s use one of the DC extension commands to give us some
information about the drawing.

If you glance down the list of DC extensions, you’ll see some of them “get”
something for you; we’ll use the dcGetNumberofLayers one here.

First have a look at the write-up on dcGetNumberofLayers in the help, then
read on….

The dcGetNumberofLayers command goes and finds how many layers there
are, and it’s return value is that number.

There are two ways we can use that return value…

Using a return value on the fly

We can simply use the return value in for example a message box. Create a
new macro or edit your previous one to look like this…

Notice a subtle difference between this coding and the previous MsgBox-
there are no quotes around dcGetNumberofLayers, whereas there were
earlier when we had “Hello World”. Reason is, we wanted the string Hello
World to be the message text; now we want the command
dcGetNumberofLayers to run, and feed its return value to the message box.
Put quotes around dcGetNumberofLayers and see what happens….

Now, when you run the macro, you will get something like this. (Before you
run it you might like to add a new layer or two so you can see that works ok.)

Just throwing the answer 3 onto the screen might seem a bit cryptic, so
modify your code as shown below. The & character joins the text in the quotes
to the return value from dcGetNumberofLayers. Note the space before the
closing quote.

Now your message box is a bit more helpful:

Allocate the return value to a variable

It might be that you need to use the number of layers more than once in your
macro- to make it simpler, we can put the return value into a variable, then
simply drop the variable in when we need it. That will save you typing, and
probably also a tiny amount of computing power since it won’t need to run the
get command every time you wan the value.

Try code like this… where we put the return value into a variable called Jim
and then use that value more than once.

Danger of course is, that the actual number of layers might change and the
value in the variable will be out of date.

Comments in your macro

It’s good practice to put some comments in your code. One reason- the selfish
one- is so that when you look at the code in a year or two, the comments will
remind you what you had in mind at the time. The other reason- the altruistic
one- is so that if someone else looks at your code, they’ll understand what
you were doing. A comment is typing in your macro that DC will ignore when
the macro runs, but which is there when you read it.

A comment can be a whole line or a can be tacked onto the end of a line.
Comments are denoted by the apostrophe ‘ – anything after a ‘ is ignored by
DC.

Here’s an example…

By now you will have noticed that DC colour codes the typing in the macro
editor- comments are green.

Ok it’s time we moved to new level- how can we get the macro to take some
info from us….

Getting input from the user… the InputBox

There are at least two ways of doing this, in Getting Started I’m going to use
the InputBox. Read up on the InputBox command in the manual. It says that
the InputBox returns a string- and that the command is InputBox$. From my
experimenting with it, it doesn’t seem to matter and even if you get a string
from an InputBox you can use it as a number, like for drawing a line.
However, don’t take that as a definitive statement…

(Later on you can read up on another method, the Dialog Designer, in the
help.)

Here’s the format of the InputBox command from the manual-

N$ = InputBox$(Prompt$, Title$, Default$, X%, Y%)

The important thing is that the command returns a value- that’s the whole
point after all. In the example below, 4 separate input boxes ask for the
beginning and end coords of a line, and then DC draws the line for you.

The prompt is the question you want asked- eg, “What is the x value of the
start of the line”; the title is supposed to be a title in the top line of the input
box, but when I tried it is always seems to say “DeltaCad” and I can’t get it to
work. (For that matter, nor does the one in the manual- they want it to say
“Greetings” but their example says “InpotBox Dialog”.)
Try the following code…

The important part of this code is the four uses of the InputBox, which
allocates the 4 coordinates to the 4 variables xa, xb, ya and yb. Those 4
values are then used in the dcCreateLine command which obviously draws
the line.

Before that, I decided to use the dcSetDrawingScale command to change the
scale to mm, and then proved that was done by using a MsgBox to display the
scale with a dcGetDrawingScale.

Lastly in this Getting started, I’d like to touch on how you can control the flow
through the macro. For example, you might like the above program to ask you
if you want to draw another line, or quit the program.

Controlling program flow

If we want to ask the user if there are more lines to be drawn, one way is to
use the MsgBox in a more advanced way….

More on the MsgBox

When we used the MsgBox before, it only had an OK button like this:

The message box has more to that that, and we can easily get it look like this:

How to do that is based on the message box type, which is explained in the
manual. Each button style is allocated a value, such as 0 for only an OK
button; each type of icon is also allocated a number such as 48 for an
Exclamation. To get the box shown above, we want 4 for a Yes / No and 32
for a Question Mark, so we add 4 to 32 to get 36 and in the MsgBox
command we put a type of 36.

Note that here we have a MsgBox returning a value we have called
Response; the value depends on which button was pressed. The return
values are also explained in the manual; in our case we will get either a 6 for
Yes or a 7 for No.

So, we have a variable Response which now holds either of the values 6 or 7.

(You might like to prove this by adding some code like this…

Then you should get something like this..

 or this depending which one you pressed.)

What do we do with the return value- how does it affect the program flow?
There are a number of ways to control the sequence in which program lines
are acted upon.

If….. and GoTo…..

The first way is the simple “if” statement. We want the code that draws the line
to be run again if the user presses Yes, otherwise we want the program to
end.

In the manual under Control Structures you will find the If statement. It has a
number of formats and the simplest is just…

If condition Then Statements...

That means that if (and only if) a certain condition is met, activate the
statement. The statement will be ignored otherwise, and the next line of code
will be run.

This simple If should work for us- we want the program to go back to the top if
Yes is pressed, otherwise we want it to run through to the end.

How do we get it to go to the top? The easiest way, although it’s frowned on
by the computer purists, is to use the “GoTo” command. As its name implies,
a GoTo goes to a certain part of the program. You have to put a label at the
place you want to go to; labels look like this:

ThisIsALabel: ‘ note the colon.

So for our code to jump back to the part of the program that draws the lines,
we have to first put a label at the right spot, like this:

Then we add an If with a GoTo, like this…

Try it and you should find that if you answer “Yes”, you get asked for the
details of another line; if you answer “No”. the program will end as before.

Other ways of controlling the flow

Read the Control Structures part of the help, and you will see there are many
more ways of controlling flow.

Firstly, the If method has a number of enhancements. For example if there is
more than one statement you want to run (we only had the Goto) then you
can spread them on many lines after the If; you end the whole thing with an
End If. Also, you can use a whole series of Else Ifs- we only had two
possibilities (Yes or No) but if you had a variety of possible values for
Response, you would need a similar number of elses.

Secondly there is the Select … Case method- this is similar to the If, in tat it
offers a number of escape routes. Each possibility is a “case” nad has its own
code.

Lastly, there are a variety of looping methods, which allow a section of code to
run while or until a certain condition is met.

There is also the For.. Next which I’ll explain next.

For … Next…

Here, we want to loop through some code for a range of values of a variable.
So we need to declare a variable as our counter. The we specify what the
range is from start to end. A simple example follows, in which we declare a
counter, then loop through a MsgBox 5 times, each time showing the
counter’s value. Each time the Next is encountered, it checks to see if the
range is used up- if not it loops again, if it is, it drops out…

A more useful example is shown below, where we use a For .. Next to loop
through the number of layers in a DC drawing and tell us the name. As before,
we use dcGetNumberOf Layers- here we use that number as the upper limit
of our loop.

What next?

Well that’s up to you- I hope you’ve got something out of this short tutorial. I
welcome your feedback, especially if you find some errors or have other
suggestions to make.

Happy programming-

Jim

